kub
Островок  здоровья

----
  
записная книжка врача акушера-гинеколога Маркун Татьяны Андреевны
----
 
 
 

I. Гомеостаз, его механизмы и значение

Предыдущая: Гомеостаз и адаптация

Организм как саморегулирующаяся система

Углубленный анализ физиологических механизмов регуляции невозможен без кибернетики и применения ее основ в виде теории автоматического регулирования и теории информации. Необходимо согласиться с мнением В.В. Ларина (1962), что ряд положений современной патологической физиологии, являющейся основой медицинского мышления, нуждается в пересмотре с учетом данных кибернетики. В связи с этим следует уяснить ее роль в разбираемой проблеме гомеостаза.

Молодая наука кибернетика представляет собой целую ветвь научных дисциплин, имеющих самостоятельные задачи и методы исследования, разбор которых, разумеется, не входит в нашу задачу. Вопросу о применении кибернетики в биологии и медицине посвящен ряд превосходных монографий (Парин В.В., Баевский Р.М., 1966; Коган А.Б., 1972; Эшби У.Р., 1959, 1964; Гродинз Ф., 1966, и др.). Отсылая читателей к указанным монографиям, мы на основе главным образом этих материалов кратко остановимся на некоторых принципиальных вопросах. Прежде всего об определении понятия. Наиболее просто кибернетику характеризуют как науку об общих закономерностях управления (Эшби У.Р., 1962). По А.И. Бергу, слово "кибернетика" древнегреческого происхождения и первоначально обозначало искусство управления кораблем. Моряк по гречески "наутес", командир корабля - "хипернаутес", отсюда искусство управления кораблем "хипернаутека". При дальнейшем многовековом применении этого слова и некотором совершенно неизбежном искажении получилось слово "кибернетика", имеющее уже другой смысл.

В настоящее время под кибернетикой понимают науку о целенаправленном и оптимальном управлении сложными процессами, происходящими в живой природе, человеческом обществе или в промышленности (Берг А. И., 1962). Таким образом, кибернетика занимается установлением общих закономерностей регулирования независимо от того, происходят ли они в живой или неживой природе.

Кибернетика пользуется единой терминологией, единым комплексом понятий, согласно которым любой управляемый комплекс представляет собой систему (Эшби У. Р., 1959). Основным достоинством кибернетических определений является то, что все они доступны методам математической обработки. В связи с этим интересно отметить научное предвидение И. П. Павлова, который еще в 1932 г., т. е. до внедрения кибернетики в физиологию, писал, что человек есть система, как и всякая другая в природе, подчиняющаяся неизбежным и единым для всей природы законам. Теперь, пользуясь терминологией кибернетики, действительно можно сказать, что живой организм представляет собой сложную управляемую систему, в которой постоянно происходит взаимодействие множества переменных внешней и внутренней среды. Ф. Гродинз (1966) определяет систему "как совокупность элементов, определенным образом связанных и взаимодействующих между собой". Общим для всех систем живой и неживой природы является наличие определенных входных переменных, которые преобразуются в ней в соответствии с ее функциями в выходные переменные (Милсум Дж., 1968).

Зависимость выходных переменных от входных определяется законом поведения системы. Все сказанное может быть представлено в упрощенной схеме (Гродинз Ф., 1966) (рис. А).

Действие входа иначе называют возмущением. В биологии входные переменные характеризуются понятиями: причина, стимул, раздражитель; выходные: следствие, эффект, ответ, реакция и т. д. В реакциях гомеостаза причиной или раздражителем, побуждающим систему к действию, часто (но далеко не всегда) служат возникающие в организме отклонения от определенных границ "нормы".

Любая система должна иметь аппарат связи для передачи информации от управляющего устройства к объекту управления. Передача информации осуществляется по каналу связи (К). При этом происходит преобразование входного сигнала в передаточный, что носит название кодирования. Передаче информации могут мешать "шумы", иначе говоря, "помехи", которые из-за искажения сигнала препятствуют выполнению программы, осуществляемой системой. Ниже приведена обобщенная схема связи (Шеннон).

В процессах саморегуляции решающую роль играет обратная связь, что означает влияние выходного сигнала на управляющую часть системы. Различают отрицательную (-) и положительную (+) обратную связь. Отрицательная обратная связь уменьшает влияние входного воздействия на величину выходного сигнала. Положительная обратная связь обладает противоположным свойством - она увеличивает действие входного сигнала.

В. В. Парин и Р. М. Баевский (1966) подчеркивают, что если отрицательная обратная связь способствует восстановлению исходного уровня, то положительная связь чаще уводит систему все дальше от исходного состояния. Вследствие этого не происходит надлежащего корригирования процесса, и это может послужить причиной возникновения так называемого порочного круга, хорошо известного патологам. Однако на основе этого нельзя считать, что положительные обратные связи всегда вредны, так как в принципе любые обратные связи могут быть основой саморегулирования. Все виды саморегуляции действуют по одному принципу: самоотклонение от базального уровня служит стимулом к включению механизмов, корригирующих нарушение.

На этот принцип в работе организма впервые обратил внимание П. К. Анохин еще в 1935 г., назвав этот эффект обратной афферентацией. Она служит для осуществления приспособительных реакций.

Когда под влиянием какого-либо раздражителя в организме возникают сигналы, передающие "приказ" к действию, т. е. к изменению каких-либо функций, то необходим известный порядок осуществляемых процессов. Этот порядок (например, по последовательности и интенсивности) действий получил название алгоритма. Здесь уместно привести еще одно понятие, ставшее весьма употребительным в литературе, - "черный ящик". Данный термин применяется в тех случаях, когда неизвестны внутренние механизмы изучаемой системы и когда эффективность действия и принципы работы системы исследуются путем сопоставления входных влияний и выходных результатов. Такой путь исследования "черного ящика" наиболее трудный, но в то же время и наиболее распространенный в решении различных биологических задач. В качестве примера можно указать, что по принципу "черного ящика" у И. П. Павлова шло изучение условных рефлексов, когда путем сопоставления внешних воздействий (входных данных) определялась деятельность пищеварительных желез или изучались поведенческие реакции (выходные данные). Попутно отметим, что по Ф. Гродинзу, в биологии могут решаться другие задачи:

  1. известны: входные данные, закон поведения системы; требуется предсказать выходную величину. Такая "прямая" задача наиболее проста;
  2. известны: закон поведения системы, выходная величина; нужно определить ее вход (следовательно, причину). Это одна из задач диагностики, которую часто приходится решать врачу. Разновидность этой задачи заключается в том, что известны вход, выход, общий вид закона поведения системы. Требуется установить значение числовых постоянных, определяющих параметры системы. Это пример интерпретации результатов функциональной диагностики, которые могут показать устойчивость изучаемой физиологической функции или готовность к нарушениям гомеостаза.

Имея в виду человека и его высшую нервную деятельность, И. П. Павлов писал, что эта система "единственная по высочайшему саморегулированию" и что она "сама себя поддерживающая, восстанавливающая и даже совершенствующаяся". К этой принципиальной павловской физиологической характеристике современная кибернетика должна была безоговорочна присоединиться, добавив лишь некоторые специальные для данной дисциплины определения. Так, говоря языком кибернетики, живые системы представляют собой очень сложные вероятностные системы, поведение которых может быть предсказано только с известным приближением (долей вероятности), так как оно не имеет строго детерминированного результата действия. Степень вероятности ответа нужно определять экспериментально для каждого конкретного показателя. Она может меняться при разных условиях. Вероятность ответа обозначается цифрами от 0 до 1. Если вероятность равна 1, то это означает 100% однозначный результат, если 0,8, то это свидетельствует о 80% вероятности.

Живой организм представляет собой пример ультрастабильной системы, которая осуществляет активный поиск наиболее оптимального и наиболее устойчивого состояния, что выражается в адаптации, т. е. в удержании переменных показателей организма в физиологических пределах, несмотря на изменения условий существования. Ультрастабильность биологических и технических систем объясняется многоконтурностью систем. Это означает, что один и тот же управляемый процесс может регулироваться несколькими управляющими системами благодаря наличию связей между ними или возникновению цепной реакции (см. главу II).

Современная техника позволила У. Р. Эшби создать машину, которая обладает некоторой способностью к адаптации. Прибор был назван им гомеостатом. Этим было доказано в принципе, что одна из особенностей поведения живых организмов - адаптация, считавшаяся раньше свойством только живых систем, в какой-то мере может быть создана искусственно. То же можно сказать и по поводу электронно-вычислительных машин, которые производят математические операции в тысячи раз быстрее, чем человек, в то время как прежде считалось, что умение считать является прерогативой только человека. Подобные примеры могут служить показателем того, что метод объяснения действий живых систем на основе технических моделей вполне оправдан и что многие процессы организма могут создаваться искусственно. Моделирование различных систем организма представляет собой большую проблему, на которой мы не можем останавливаться, и поэтому отсылаем читателей к специальной монографии В. И. Шумакова и соавт., вышедшей под редакцией Б. В. Петровского в 1971 г.

Данные пути открывают большие перспективы для клинической медицины. Успехи свидетельствуют о том, что грани между живой и неживой природой не так резки, как думали прежде, ибо закономерности действия, автоматической регуляции и управления систем во многом едины. Такое утверждение не может расцениваться как механический подход к физиологическим явлениям, о чем будет сказано ниже. Здесь речь идет о результатах использования современной техники и о применении математического анализа в объяснении весьма сложных биологических явлений, что, несомненно, является весьма прогрессивным. Однако при этом не следует забывать, что "целесообразная" работа машины не имеет никакой самостоятельной ценности и является лишь техническим придатком в разумной деятельности человека (Колмогоров А. Н., 1959).

Иерархия управления

В предыдущем разделе уже говорилось о живом организме как об ультрастабильной системе. Такая система позволяет не только удерживать свойства внутренней среды в известных физиологических пределах, но и проявлять спонтанную активность (свободную жизнь) и долгие годы противодействовать дезорганизующему влиянию вредных факторов внешней среды. Мало того, живой организм, проявляя пластичность, может "приспосабливаться" к изменившимся условиям. Это достигается прежде всего многоконтурностыо, придающей особую устойчивость биологической системе. Многоконтурность характеризуется не только наличием в известной мере параллельных систем управления, иначе говоря, дублированием функций, о чем будет речь ниже, но и явлениями иерархии, которую мы уже отмечали на примере нервной системы. Приведем схему иерархии управления живых организмов какого-либо вида по А.Б. Когану (1972).

Эту схему можно продолжить и говорить об управлении на молекулярном уровне, когда речь идет о молекулах как об элементах химического состава ядра и цитоплазмы; на субмолекулярном уровне, т. е. о возможности регулирующих влияний на процессы образования и передачи электронов - как об элементах состояний молекулярного состава. Уровни иерархии систем могут анализироваться в разных аспектах и масштабах. Например, в приведенной выше схеме рассмотрена проблема иерархии в плане вида. Однако можно трактовать иерархию в аспекте свойств саморегуляции и самоорганизации целостного организма потому, что состояние и свойства организма пе являются простой суммой всех его систем.

По С. Н. Брайнису и В. С. Свечинскому (1963), различают три уровня саморегуляции организма. Низший уровень определяет постоянство основных физиологических констант и обладает известной автономностью управления. Средний уровень осуществляет приспособительные реакции в связи с изменениями внутренней среды организма. Высший уровень обеспечивает по сигналам внешнего мира изменение вегетативных функций и поведения организма. Здесь физиологические системы регуляции переведены на "язык" кибернетической терминологии. К этому можно добавить, что вопросы взаимодействия высших и низких уровней регуляции в физиологии и патологии были показаны в работах К. М. Быкова и его школы при изучении роли коры головного мозга в деятельности внутренних органов.

В качестве иллюстрации построения кибернетических схем иерархической регуляции различных констант организма приведена схема регуляции сахара в крови по Г. Дришелю (1960) (Рис. В.). На ней показано, что регуляция величины содержания сахара в крови прежде всего осуществляется гомеостатическим механизмом печени, который самоуправляется в известных пределах уровнем сахара в крови независимо от гормональных влияний. Следующий этап регуляции - островковый аппарат поджелудочной железы, где еще независимо от вышестоящих сигналов гипофиза реализуют свое действие гормоны: инсулин и глюкагон, действующие в противоположном направлении. О значении контраинсулярных гормонов см. главу III.

Более высокий уровень регуляции: система гипофиз - промежуточный мозг, и наконец, возможно влияние коры головного мозга. Таким образом могут включаться различные степени регулирования в зависимости от условий и состояния организма.

Включение различных уровней во многом определяется интенсивностью возмущающего воздействия, степенью отклонения физиологических параметров, лабильностью адаптивных систем. Вопрос о реакции стресс как механизме гомеостаза и причине развития болезни будет рассмотрен в главе XVI.

Саморегуляция и сохранение гомеостаза клеточных систем

Проблема саморегуляции клеточных систем подробно изложена в специальных трудах (Уотермен Т., 1971; Режабек Б. Г., 1972). Здесь мы даем лишь общую характеристику.

При рассмотрении регуляции на любом уровне организма прежде всего необходимо учитывать, что для саморегуляции требуется наличие свободной энергии. Жизнь непрерывно поддерживается тратой энергии. Установлено, что организм с точки зрения энергетики постоянно находится в состоянии устойчивого неравновесия. Бауэр, сформулировавший этот принцип, утверждает, что "только живые системы не бывают в равновесии и исполняют за счет свободной энергии постоянно работу против равновесия, требуемого законами физики и химии при существующих внешних условиях" (цит. по Когану А. Б., 1972).

Синтез белка

Не вдаваясь в подробности, кратко напомним, что регулируемыми источниками энергии в клетках являются система переноса электронов, цикл Кребса, гликолиз и обмен фосфорных соединений.

Процесс образования богатого энергией аденозинтрифосфата (АТФ) зависит от концентрации аденозиндифосфата (АДФ) и неорганического фосфата (Рнеорг). Эта взаимозависимая саморегулирующаяся система может быть представлена в следующем виде:

АТФ <-> АДФ + Рнеорг

За счет использования аккумулированной в АТФ энергии в клетках происходит синтез белков, необходимый для клеточной регенерации и осуществления других процессов обмена. Особенностью синтеза в живых клетках в отличие от синтетических процессов химии является использование высокоспециализированных ферментных систем.

Сложный синтез белка, осуществляемый генетическим аппаратом клетки, в наиболее упрощенном виде можно представить в такой последовательности:

ДНК -----------> мРНК ----------> белок транскрипция трансляция

Схема синтеза белка приведена на рис. 1. Как показывают многочисленные исследования, генетический аппарат клетки усиливает синтез белка в тех случаях, когда повышается функциональная деятельность клетки или увеличивается изнашиваемость клеточных структур.

Большую роль в регуляции функций клетки играют мембраны, через которые могут передаваться химические сигналы и которые представляют собой сложноорганизованные липопротеидные структуры, включающие в себя ряд ферментов. Кроме того, клеточные мембраны, меняя свою проницаемость, принимают участие в регуляции электролитного состава клетки (натрия, калия, кальция, магния и других электролитов), осуществляя также функцию биологических "насосов".

Клеточные процессы находятся под регулирующим влиянием различных гормонов, которые могут усиливать или ослаблять активность тех или иных реакций. Например, анаболические гормоны увеличивают процессы синтеза, катаболические гормоны, как правило, ведут к увеличению интенсивности распада органических веществ клетки. Ниже представлена схема взаимодействия генов, ферментов и гормонов в общей регуляции клеточного гомеостаза (рис.2).

Саморегуляция вегетативных функций

Этот вопрос подробно рассмотрен в ряде работ (Чороян О. Г., 1972; Дришель Г., 1960; Гродинз Ф., 1966). Остановимся на наиболее важных положениях. Устойчивый автоматизм регуляции вегетативных функций обеспечивается тем, что физиологические системы одновременно принимают участие в выполнении нескольких функций. Например, кровообращение служит для доставки к тканям газов и питательных веществ, удаления газов и конечных продуктов обмена, доставки гормональных регуляторов. Кроме того, кровообращение участвует в регуляции дыхания, терморегуляции, обеспечении мышечной деятельности и т. д. Физиологические процессы могут дублироваться разными системами организма. Например, экскреторная функция почек в какой-то мере замещается деятельностью потовых желез, не говоря уже о взаимной компенсации парных органов. На языке кибернетики приведенные примеры характеризуют наряду с иерархией многоконтурность ультрастабильных систем путем дублирования функций. Все это создает нелинейность связей между отдельными блоками системы, что крайне затрудняет математические расчеты.

В качестве примера кибернетического анализа состояний гомеостаза, обусловленных процессом дыхания, приводим блок-схему дыхательного хемостата по Ф. Гродинзу (1966).

Термин "хемостат" применяется для обозначения постоянства химического состава внутренней среды организма. Дыхательная система служит главным образом для сохранения постоянства напряжения кислорода и углекислого газа, а также концентрации водородных ионов (pH). На этой схеме в качестве входного сигнала принята альвеолярная концентрация Va. Буквой i обозначены исходные величины нормы. "Возмущениями" (раздражителями), поступающими на вход, являются повышенное содержание углекислого газа, недостаток кислорода во вдыхаемом воздухе или сдвиги pH крови. Эта модель и предложенная в ее развитие динамическая модель Грея позволили решать такие вопросы, как потребность пилотов в кислороде на больших высотах, характер изменения вентиляции легких и напряжения углекислого газа в артериальной крови (РАсо2) в процессе регулирования дыхания. При этом автор указывает, что встретились большие трудности, так как в схеме не учтены некоторые физиологические детали, например то, что хеморецепторы расположены в разных частях организма, а не на входе управляющей системы, как показано на схеме; в схеме опущено значение механорецепторов и сигналов к дыхательным мышцам; недостаточно учтен воздух мертвого пространства.

Таким образом, управляющая система в жизни всегда более сложна, чем на кибернетических схемах, но тем не менее, по мнению автора, модель оказалась весьма полезной. Она позволила не только решить некоторые задачи, но и более четко сформулировать ряд, казалось бы, уже известных физиологии вопросов. Изучение современных проблем медицины с применением кибернетики, с использованием ее методов математического анализа развивается все более плодотворно. Однако при этом не следует забывать необходимость развития физиологии и патофизиологии, так как материалы этих дисциплин служат основой логического построения новых схем. Это необходимо еще и потому, что любая кибернетическая система абстрактна. Конкретные процессы, протекающие в жизни, всегда более сложны. Сошлемся для примера на работу П. К. Анохина о теории функциональных систем в качестве предпосылки к построению физиологической кибернетики.

П. К. Анохин понимает под функциональной системой "такое сочетание процессов и механизмов, которое, формируясь динамически в зависимости от данной ситуации (разрядка наша. - П. Г.), непременно приводит к конечному приспособительному эффекту как раз именно в данной ситуации". В данном определении нам хотелось подчеркнуть только одну задачу, которая пока входит в планы кибернетических исследований далеко не в полной мере, а именно физиологическое формирование динамической системы в зависимости от данной ситуации. Она может быть решена лишь путем афферентного синтеза сигналов, поступающих с периферии в центральную нервную систему. На основе этого предварительного синтеза дается сигнал к запуску тех или иных кибернетических систем. Иначе говоря, возникает какой-то новый функциональный аппарат регуляции именно только для данной ситуации, поэтому он определен как динамический. П. К. Анохин назвал его "акцептором действия". Таким образом, любая приспособительная реакция протекает по принципу образования функциональных систем организма, куда, по П. К. Анохину, входят афферентный синтез, акцептор действия, формирование действия и обратная афферентация о его результатах.

Значение этой схемы функциональных систем может быть показано на примере регуляции дыхательной функции организма.

В этой схеме проблема регуляции дыхания представлена значительно шире, чем в данной схеме Ф. Гродинза (см. выше). В ней отмечены возможные пути компенсации дыхательной функции. Выбор этих путей и их включение, очевидно, могут происходить по-разному в зависимости от причины, вызвавшей изменение дыхания. Например, оно может быть следствием нарушения тканевого дыхания (гистотоксическая гипоксия), изменений центральной регуляции дыхания или состава вдыхаемого воздуха (аноксическая гипоксия), возникновения различных типов циркуляторной гипоксии, недостатка гемоглобина или его инактивации и т. д. Выбор соответствующих механизмов регуляции при разных формах гипоксии был бы вообще невозможен без афферентного синтеза, без возникновения функционального аппарата - акцептора действия. Эти вопросы представляют собой пример чисто патофизиологических задач, которые решаются на различных моделях экспериментальной патологии. Проблема дыхания и физико-химического гомеостаза обсуждается в главе VI. Разумеется, включение кибернетики в анализ получаемых результатов всегда весьма полезно. Мы подчеркиваем: включение, но не самостоятельное решение различных вопросов физиологии и патологии.

* * *

Гомеостаз представляет собой одну из важнейших проблем современной медицины. Постановка этой проблемы, осуществленная в свое время Клодом Бернаром, позволила выяснить многие вопросы необычной устойчивости живых организмов. Дальнейшие работы В. Кеннона обосновали идею о том, что механизмы гомеостаза обусловлены деятельностью различных физиологических систем, среди которых, по данным ранее проведенных исследований И. П. Павлова, решающая роль принадлежит коре головного мозга. Именно большие полушария обеспечивают "тончайшее и точнейшее уравновешивание организма со средой".

В. Кеннон обоснованно возражал против статического понимания постоянства внутренней среды организма. Основное постоянство живого организма - это постоянная изменчивость совершающихся процессов в целях адаптации и сохранения единства организма. В связи с этим мы считаем ошибочным стремление некоторых исследователей трактовать сущность гомеостаза только как постоянство различных физиологических констант организма. Это выражается, например, в неоправданном применении таких терминов, как хемостат, гемостат, осмостат, плазмо-гемостат, прессостат, иммуногемостат и т. д. В этих применяемых в специальной (особенно кибернетической) литературе терминах, несомненно, заключена известная механистичность в определении сложных биологических процессов. Вряд ли уместно определять механизмы терморегуляции у животных термином "термостат". По-видимому, не всегда учитывают, что механизмы гомеостаза, т. е. динамического уравновешивания организма и внешней среды, могут вести к выработке других констант; процессы иногда протекают вопреки законам неорганической химии, вопреки законам термодинамики. Это объясняется своеобразием использования энергетических ресурсов, в основе которого лежит устойчивое неравновесное состояние материи, свойственное только живым системам. Следовательно, любые константы организма не могут находить объяснения только в обычном уравновешивании сил, свойственном статике, вне учета всех физиологических закономерностей.

Большая роль в объяснении механизмов гомеостаза и в создании различных физиологических моделей принадлежит кибернетике. Применение теорий информации и автоматического регулирования позволило использовать математический анализ в решении ряда биологических вопросов. Это открыло новые перспективы для дальнейших исследований и применения современной техники для нужд здравоохранения. Однако на основании этого не следует думать, что кибернетика закрыла дорогу чисто физиологическим исследованиям. Путь дальнейшего прогресса науки лежит в совместном решении специалистами различного профиля актуальных задач медицины. Особенно плодотворным может оказаться именно комплексное решение задач, так как различный подход позволяет выявлять и различные аспекты изучаемой проблемы.

Гомеостаз - большая проблема современной патологии, потому что явление гомеостаза означает не только сохранение постоянства или оптимальное восстановление и приспособление к условиям окружающей среды. С механизмами гомеостаза связано качественное изменение свойств организма и его реактивности. Сама болезнь по своей биологической сущности также представляет собой проблему гомеостаза, нарушения его механизмов и путей восстановления. На основе закономерностей гомеостаза разрабатываются эффективные методы гигиены и рациональной терапии. Однако решение многих вопросов этого "черного ящика" - дело будущего.

К оглавлению

Литература [показать]




 
 

Куда пойти учиться



 

Виртуальные консультации

На нашем форуме вы можете задать вопросы о проблемах своего здоровья, получить поддержку и бесплатную профессиональную рекомендацию специалиста, найти новых знакомых и поговорить на волнующие вас темы. Это позволит вам сделать собственный выбор на основании полученных фактов.

Медицинский форум КОМПАС ЗДОРОВЬЯ

Обратите внимание! Диагностика и лечение виртуально не проводятся! Обсуждаются только возможные пути сохранения вашего здоровья.

Подробнее см. Правила форума  

Последние сообщения



Реальные консультации


Реальный консультативный прием ограничен.

Ранее обращавшиеся пациенты могут найти меня по известным им реквизитам.

Заметки на полях


навязывание услуг компании Билайн, воровство компании Билайн

Нажми на картинку -
узнай подробности!

Новости сайта

Ссылки на внешние страницы

20.05.12

Уважаемые пользователи!

Просьба сообщать о неработающих ссылках на внешние страницы, включая ссылки, не выводящие прямо на нужный материал, запрашивающие оплату, требующие личные данные и т.д. Для оперативности вы можете сделать это через форму отзыва, размещенную на каждой странице.
Ссылки будут заменены на рабочие или удалены.

Тема от 05.09.08 актуальна!

Остался неоцифрованным 3-й том МКБ. Желающие оказать помощь могут заявить об этом на нашем форуме

05.09.08
В настоящее время на сайте готовится полная HTML-версия МКБ-10 - Международной классификации болезней, 10-я редакция.

Желающие принять участие могут заявить об этом на нашем форуме

25.04.08
Уведомления об изменениях на сайте можно получить через раздел форума "Компас здоровья" - Библиотека сайта "Островок здоровья"

Островок здоровья

 
----
Чтобы сообщить об ошибке на данной странице, выделите текст мышью и нажмите Ctrl+Enter.
Выделенный текст будет отправлен редактору сайта.
----
 
Информация, представленная на данном сайте, предназначена исключительно для образовательных и научных целей,
не должна использоваться для самостоятельной диагностики и лечения, и не может служить заменой очной консультации врача.
Администрация сайта не несёт ответственности за результаты, полученные в ходе самолечения с использованием справочного материала сайта
Перепечатка материалов сайта разрешается при условии размещения активной ссылки на оригинальный материал.
© 2008 blizzard. Все права защищены и охраняются законом.



 
----