kub
Островок  здоровья

----
  
записная книжка врача акушера-гинеколога Маркун Татьяны Андреевны
----
 
 
 

Часть I. История новой науки

Глава 7. ПОРАЖЕНИЯ И ПОБЕДЫ

"Глинновские лаборатории"

Мир в Глинн Хаузе был взорван, когда однажды Митчел решил просмотреть пачку научных журналов за последние два-три года. С надеждой листал он страницы многочисленных статей по биоэнергетике. Что сталось с его гипотезой? Быть может, получены факты, ее подтвердившие? Или она опровергнута? Нет, хуже. Она не замечена.

Ах так! Митчел немедленно берется за организацию лаборатории, чтобы поставить опыты и проверить свою догадку. Он сразу же отказался от мысли вернуться в Эдинбург или любой другой город. Хватит с него тамошнего начальства и воздуха, отравленного автомобилями (еще один штрих к портрету: Митчел с одним из сыновей конструировал электромобиль). Лаборатория должна быть здесь, в Глинн Хаузе. Его собственная лаборатория - предприятие, независимое от всякой научной и ненаучной бюрократии.

А деньги? Что же, можно построить коттеджи и сдавать их дачникам. Кроме того, есть еще и доход от фермы! Но захочет ли кто-нибудь поехать в такую глушь, чтобы помочь ему в экспериментах? Посмотрим, не откликнется ли "старая гвардия", сотрудники его давно распавшейся группы в Эдинбурге.

Откликнулась Дж. Мойл. Пройдет несколько лет, и это имя прославится среди биоэнергетиков, но пока Мойл - безвестная и единственная соратница Митчела в его начинании. Нет слов, как благодарен он ей. И во вновь основанном научном предприятии под громким названием "Глинновские лаборатории для стимулирования фундаментальных биологических исследований" Митчел решает иметь двух директоров: это Мойл и он сам. Не беда, что директоров двое, а в их подчинении только один лаборант. Самоотверженность должна быть вознаграждена, и немедленно! Так Мойл стала директором.

Для лаборатории, размещенной в нескольких комнатах на первом этаже Глинн Хауза, Митчел закупил самое необходимое - центрифугу, полярограф, счетчик изотопов, реактивы. И начались опыты.

Первые опыты Митчела и Мойл

Митчел взялся за то, что было доступно при его более чем скромном оборудовании и, мягко говоря, не совсем укомплектованном штате.

Гипотеза предсказывала, что дыхание должно образовывать по одну сторону от мембраны кислоту, а по другую - щелочь. Так давайте в процессе дыхания мерить кислотность среды, благо для этого не требуется ничего, кроме рН-метра - простенького прибора, состоящего из пары электродов и вольтметра.

Из печени белых крыс выделяли митохондрии, помещали их в бескислородные условия, а затем начинали реакцию окисления добавкой кислорода. Не изменится ли кислотность среды, в которой инкубируются митохондрии?

Первые опыты - первые неудачи. Но, может быть, рН-метр слишком груб, чтобы почувствовать небольшие сдвиги в концентрации Н+ ионов? Митчел становится стеклодувом и конструирует изящную ячейку совсем маленького объема и очень чувствительный электрод.

Вновь опыт с добавкой кислорода... Есть! Прибор регистрирует изменение pH. Среда закисляется. А что, если добавить вместо кислорода АТФ?

Снова закисленне! Именно этого можно было ожидать, если бы АТФ расщеплялся той системой, которая в присутствии кислорода синтезирует АТФ.

Митчел и Мойл направляют в "Нэйчер" краткое сообщение, что их опыты подтверждают хемиосмотическую гипотезу.

"Варшавская битва". Поражение

Апрель 1966 года. Варшава. Европейский съезд биохимиков. Англичанин Б. Чэпел рассказывает о своих опытах с фосфолипидными мицеллами - полыми внутри сферическими частицами, стенки которых сделаны из жироподобных веществ, полученных из биомембран.

Оказывается, мицеллы отвечают на добавки веществ-разобщителей и антибиотика валиномицина точно такими же изменениями концентрации ионов калия и водорода, как митохондрии в опытах Митчела и Мойл. Стало быть, разобщители и валиномицин атакуют липидный компонент системы, а не белки-ферменты: в мицеллах ферментов просто нет. Напомним, что сторонники "химических" схем сопряжения считали мишенью действия разобщителей именно ферменты. Казалось бы, новое подтверждение гипотезы Митчела? Однако Чэпел пока уклоняется от такого вывода.

После съезда австралиец Э. Слейтер и польский биохимик Л. Войчак собирают семинар. Присутствует узкий круг специалистов по энергетике митохондрий. Среди них (впервые!) Митчел. Более того, ему оказана честь председательствовать на одном из заседаний.

Митчел использует вводное слово председателя, чтобы изложить хемиосмотическую концепцию. В поддержку своей гипотезы он приводит полученные с Дж. Мойл данные опытов на рН-метре. Встает Б. Чанс:

- А что будет, если в вашем, доктор Митчел, опыте добавить вещество, связывающее ионы кальция?
- Я так полагаю, что ничего особенного не случится.
- Мы добавили такое вещество, и все ваши изменения кислотности исчезли! Добавили кальций - И они возникли вновь. По-видимому, вы обнаружили какой-то побочный эффект, сопутствующий переносу кальция в митохондрии.

С Митчелом я впервые познакомился в Варшаве, Чанса знал уже пять лет, с Московского международного конгресса биохимиков. Двое спорящих являли собой разительный контраст: англичанин Митчел немного сутулый, с крупной головой и высоким лбом, редеющей шевелюрой чуть вьющихся седеющих волос, вспыльчивый и добродушный, как мистер Пикквик, и Чанс, стройный, подтянутый американец с прямыми, гладко зачесанными назад волосами и жестким взглядом "морского волка" (в свои 54 года он стал чемпионом мира по парусным гонкам). Чанс старше Митчела на восемь лет, но он кажется моложе своего противника, динамичнее и гораздо приспособленней к спору.

Пытаясь опровергнуть Митчела, Чанс применил свою "тяжелую артиллерию" физического эксперимента: прецизионный спектрофотометр для мутных сред, быструю регистрацию параметров в миллисекундной шкале времени и т. д. Митчел мог противопоставить этой новейшей американской технике лишь свои скромный самодельный рН-метр.

Вслед за Чансом Митчела атакуют другие участники семинара.

А что же Чэпел? Он молчит...

Я прошу у Митчела слова. Но тот забыл о своих функциях председателя, смешался и потерял контроль над собранием. Вновь говорит Чанс. Его слова как приговор несостоявшейся теории:

- Идея фантастична, результаты опытов неясны!

У меня сохранилась фотография: Митчел за кофе в перерыве между заседаниями, сразу после поражения. Рядом Чэпел. Митчел что-то доказывает своему собеседнику. Тот, отвернувшись, всем своим видом демонстрирует сомнение.

Cеребряный звук трубы

Варшавский съезд стал одним из ключевых моментов в моей научной судьбе. После завершения работ по терморегулярному разобщению в мышцах (помните опыт со стрижеными голубями?) я понял: чтобы идти вперед, надо знать, как устроен загадочный механизм, сопрягающий дыхание с синтезом АТФ.

Вначале я отдал дань химической схеме. Но опыты, что мы вели с И. Севериной и Ю. Евтодиенко в одном из институтов на улице Вавилова, давали непредсказуемые результаты. Мы обнаружили кое-какие новые эффекты и даже открыли, сами того не желая, сильнейший дыхательный яд, но не приблизились к решению проблемы.

Я жил тогда у Калужской заставы. На моем пути к улице Вавилова был пустырь. Местами из-под песка пробивались зеленые ростки. Я загадал: если за лето пустырь покроется травой, мы на верной дороге. Вернувшись в конце августа из отпуска, я вновь увидел пустырь. По нему гулял ветер, закручивая песчаную пыль в маленькие смерчи. Земля осталась бесплодной.

К весне 1966 года стало ясно, что мы в тупике. В красной папке, где я обычно хранил программы будущих опытов моих сотрудников, впервые появился листок под девизом "План отступления". За мною тогда уже был отдел биоэнергетики в новой лаборатории, только что созданной в МГУ одним из отцов молекулярной биологии, академиком А. Белозерским.

Непросто было преодолеть инерцию. Идут опыты, публикуются статьи, делаются дипломные и аспирантские работы, и вдруг появляется шеф (шеф-то, кстати, без году неделя!) с сообщением, что прежний его план ни к черту, а двигаться нужно совсем в другую сторону...

Я все медлил, откладывал решающий разговор с ребятами в лаборатории и с таким вот настроением поехал в Варшаву. А здесь знакомство с Митчелом, баталия между ним и Чансом и, наконец, сокрушительное поражение Митчела.

Но не это, другое всплывает в памяти прежде всего, когда я вспоминаю Варшавский съезд. Полутемный конференц-зал, огромный экран, и на нем по темному фону белая кривая, неудержимо стремящаяся вниз. Опыт Б. Чэпела. Липидные мицеллы теряют калий, когда к ним добавили динитрофенол и валиномицин.

Выходит, мы три года искали то, что никто не терял! Не умный, всемогущий белок, а глупый липид, от которого только и требуется, что создать белку подходящие условия для его сложной работы, беспомощный, инертный жир - вот в действительности кто главное действующее лицо во всей этой драме под названием "разобщение".

Из Варшавы я отправился в Краков. Поезд пришел поздно вечером. Была темная, влажная весенняя ночь. По улицам прекрасного незнакомого города я отправился искать гостиницу. Вдруг где-то почти над моей головой в черном апрельском небе грянул тревожный серебряный звук трубы и оборвался на полуноте. Это легендарный трубач с башни Марьяцкого собора возвещал о появлении врагов у городских стен и, сраженный вражеской стрелой, умолкал, не допев свою звонкую песню... С тех пор всякий раз, когда я мысленно обращаюсь к весне 1966 года, из недр памяти возникает белая по черному фону кривая Чэпела и этот трубач на Марьяцком соборе.

Первая "серая книга" Митчела

Вернувшись в тишину своего Глинн Хауза, Митчел повторил тот опыт, которым сокрушил его в Варшаве Чанс. Напрасно Мойл вглядывалась в показания рН-метра: кислород не вызывал закисления, если в среде было вещество, связывающее кальций. Так что же, Чанс был прав там, в Варшаве? В этом конкретном опыте - да.

Такую гипотезу, как схема Митчела, нельзя доказать, имея в руках один только простейший рН-метр, но ее нельзя и опровергнуть столь простым способом!

А все-таки при чем тут кальций? Насколько велико в действительности должно быть закисление, если работает дыхательная цепь, закрепленная поперек митохондриальной мембраны?

Митчел садится за письменный стол, а опыты временно препоручает своей верной сотруднице Мойл и лаборанту.

Временно?

Нет, навсегда. Отныне Митчел уже, как правило, не участвует в опытах. Он пишет книгу. Свою первую книгу с подробным изложением хемиосмотической теории.

Собственно, книга была начата еще до Варшавы. Но в окончательном виде она была готова лишь к концу мая 1966 года. Не рассчитывая найти сколько-нибудь серьезное издательство, которое решилось бы на публикацию подробного описания только что публично отвергнутой гипотезы, Митчел напечатал книгу сам, на ротапринте.

Так появилась на свет брошюра в сером картонном переплете, на котором значилось: "Хемиосмотическое сопряжение в окислительном и фотосинтетическом фосфорилировании". Книга была разослана участникам варшавской дускуссии.

В конце того же 1966 года Митчела поддержала его Alma mater - Кембриджский университет, где согласились опубликовать сокращенный вариант "Серой книги" в "Байолоджикал ревьюз".

В своей книге, ныне одной из самых широко цитируемых работ по биоэнергетике, Митчел рассмотрел механизмы реакций, которые могли бы сопровождаться переносом протонов и электронов через мембраны. Там же содержался ответ на конкретный вопрос, в какой степени среда инкубации с митохондриями должна закисляться при добавлении кислорода. Расчет дал курьезный результат: оказалось, что Митчел и Мойл не могли увидеть закисления среды в своих опытах 1965 года, если бы это закисление было обусловлено одним только разделением Н+ и ОН- в митохондриальной мембране.

Дело в том, что разделение противоионов должно создавать разность электрических потенциалов (ее обозначают ΔΨ) между двумя разграниченными мембраной отсеками. Если при дыхании ионы Н+ окажутся снаружи митохондрии, а ионы ОН- - внутри, то внутренность митохондрии зарядится отрицательно, а внешний объем - положительно. Величина ΔΨ будет тем больше, чем больше противоионов будет разделено мембраной.

Но ΔΨ не может возрастать беспредельно. Чем выше величина отрицательного заряда внутри митохондрий, тем труднее дыханию поддерживать процесс разделения ионов Н+ и ОН-. В какой-то момент разделение зарядов прекратится. Это случится тогда, когда выигрыш в энергии при реакциях дыхания окажется недостаточным, чтобы покрыть энергетический дефицит, возникающий при разделении противоионов. Именно в этот момент дальнейшая зарядка электрической емкости мембраны станет невозможной.

Сопоставляя электрическую емкость мембраны и выделение энергии в процессе дыхания, Митчел заключил: мембрана зарядится так быстро, что кислотность снаружи митохондрий не успеет измениться сколько-нибудь заметным образом.

Не подрывает ли этот расчет хемиосмотическую гипотезу? Ведь мы говорили все время о нейтрализации кислоты и щелочи. Оказывается, что нет.

Обратимся еще раз к схеме Митчела. Согласно гипотезе синтез АТФ рождает положительные заряды (Н+) во внутреннем пространстве митохондрий, то есть в отсеке, заряжающемся за счет дыхания отрицательно. Та же реакция синтеза АТФ приводит к уменьшению количества положительных зарядов (Н+) снаружи митохондрий, то есть там, где дыхание создает знак "плюс". Таким образом, синтез АТФ нейтрализует работу дыхательной системы, не только поставляя кислоту в защелачивающийся дыханием внутренний отсек митохондрии, но и образуя в этом отсеке положительные заряды. Тем самым дыхание может служить движущей силой для процесса фосфорилирования, даже не образуя сколько-нибудь заметной разности концентраций водородных ионов. Достаточно создания ΔΨ.

Но что же в таком случае измеряли Митчел и Мойл в своих первых опытах? Откуда взялось закисление и что за магический эффект вещества, связывающего кальций?

Если закисление действительно было связано с работой дыхательных ферментов, то в условиях опыта электрическая емкость мембраны не ограничивала процесса разделения противоионов при дыхании.

Что, если в отрицательно заряженную внутреннюю полость митохондрии проникал какой-нибудь катион, например, кальций?

В своих опытах Митчел и Мойл не добавляли ионов кальция, но специально и не освобождались от них. Источником кальция могли быть реактивы, да и сами митохондрии. Но если все обстоит именно так, то давайте добавим кальций, и закисление должно возрасти... Митчел попросил свою сотрудницу поставить этот опыт. Закисление резко увеличилось!

Таков был ответ Чансу. Но еще не доказательство гипотезы; скорее свидетельство ее непотопляемости теми средствами, которые употребил в Варшаве знаменитый яхтсмен.

Протонофоры

"Серая книга" Митчела окончательно укрепила мое убеждение, что новая концепция достойна стать рабочей гипотезой биоэнергетики, заменив неудачную химическую схему. К тому времени мы уже были подготовлены к принятию хемиосмотической гипотезы всем предшествующим развитием своих работ: открытием эффекта двух путей окисления, а затем терморегуляторного разобщения в мышечных митохондриях и, наконец, отрицательным итогом опытов по проверке одного из вариантов химической схемы.

В частности, Митчел давал простой ответ на вопрос о том, как можно представить себе быстрое переключение дыхания на холостой путь, например, при охлаждении организма. Напомним, что, по Митчелу, дыхание образует избыток ионов водорода по одну сторону мембраны митохондрии, а при синтезе АТФ эти избыточные ионы водорода потребляются. Достаточно повысить проницаемость мембраны для протонов, как ΔΨ и разность pH исчезнут без всякого синтеза АТФ, дыхание пойдет без фосфорилирования, а вся энергия окислительных реакций превратится в тепло.

Впоследствии оказалось, что в разобщении на холоде участвуют свободные жирные кислоты, которые действительно повышают проницаемость мембран для водородных ионов. Но это уже следующая история.

В 1966 году сотрудник института биофизики Е. Либерман задался целью получить искусственные мембраны с такими же электрическими характеристиками, что и мембраны биологические. Он добавлял к фосфолипидам, из которых делали искусственные мембраны, различные вещества и смотрел, не снизится ли сопротивление до величин, характерных для внешней мембраны нейрона, популярного объекта электрофизиологических исследований. Одним из соединений, снижающих сопротивление, оказались жирные кислоты. Именно эти вещества, как мы думали, могут играть роль природных разобщителей.

В том же году А. Ленинджер, уже упоминавшийся нами известный биоэнергетик и автор самого знаменитого учебника по биохимии, поставил опыт по действию динитрофенола на искусственную мембрану. Как и у Е. Либермана, это была так называемая черная мембрана из фосфолипидов (черная - значит, такая тонкая, меньше длины волны видимого света, что уже не преломляет световых лучей). Мембрана закрывала небольшое отверстие в тефлоновой перегородке, разделяющей кювету на два отсека. В каждый из отсеков погружено но электроду, между ними вольтметр. В этой простой системе легко измерить сопротивление черной мембраны. Так вот оказалось, что добавка динитрофенола в оба отсека кюветы или даже в один из них заметно снижает сопротивление мембраны.

Сопоставив эти два наблюдения: одно, сделанное в Пущине, и другое - в Балтиморе, - с результатами Б. Чэпела на фосфолипидных мицеллах, я решил, что перед нами прекрасная модель для проверки одного из постулатов хемиосмотической теории, а именно концепции разобщителей как переносчиков водородных ионов.

Как-то поздно вечером, возвращаясь из МГУ с знаменитого биологического семинара И. Гельфанда вместе с Е. Либерманом, я предложил ему взять несколько разобщителей и проверить их действие на сопротивление черных мембран. Он немедленно согласился, заметив с воодушевлением, что это будет его первый опыт, где в равной степени окажется интересным как положительный, так и отрицательный результат.

Сначала Е. Либерман испытал два вещества, в сто раз отличавшиеся по разобщающей активности: слабый разобщитель динитрофенол и сильный с длинным названием тетрахлортрифторметилбензимидазол (ТТФБ). Добавление динитрофенола снижало сопротивление мембраны, что уже не было новостью после опытов Ленинджера. А как поведет себя мембрана после добавления ТТФБ? Первое впечатление - от капли этого вещества она просто лопнула. Но нет, мембрана-то есть, а вот ее сопротивление - оно катастрофически снизилось.

Измерение показало, что ТТФБ снижает сопротивление черной мембраны примерно в сто раз сильнее, чем динитрофенол.

Из 18 атомов, образующих молекулу ТТФБ, только один - атом водорода. Если ТТФБ - переносчик водородных ионов, то можно было бы думать, что замещение этого единственного водорода (кстати, легкоотщепляющегося) должно лишить вещество его способности разобщать дыхание и фосфорилирование и понижать сопротивление черной мембраны. Опыт подтвердил и это предположение.

Затем был взят еще десяток разобщителей, и всегда вещества, более активные в опытах с митохондриями, были более активны и на искусственных мембранах. Кроме того, удалось предсказать разобщающее действие веществ, ранее не подозревавшихся в этом качестве. Если выяснялось, что определенное химическое соединение создает протонную проводимость в черных мембранах, то можно было не сомневаться: оно разобщит дыхание и фосфорилирование в последующем опыте с митохондриями. Это правило не знало исключений.

Так был сделан вывод о справедливости предположения Митчела, касающегося природы феномена разобщения.

Вещества, повышающие протонную проводимость искусственных и биологических мембран, я окрестил "протонофорами".

Красные флажки на карте

Работа по протонофорам вызвала ожесточенные споры, которые теперь, спустя 15 лет, кажутся уже не слишком интересными. Важно, что опыты оказались достаточно простыми, чтобы их воспроизвел любой биофизик, способный "повесить" черную мембрану на отверстие в тефлоновой перегородке. Вскоре термин "протонофор" замелькал на страницах научных статей, и изучение протонофоров стало новым направлением науки о мембранах.

Митчел воспринял приятную для себя весть по-своему. Он завел большую географическую карту мира и воткнул в Москву красный флажок.

Когда в 1975 году молодой сотрудник нашей лаборатории И. Козлов посетил Глинн Хауз, он обнаружил, что карта усеяна красными флажками: так Митчел отмечал места, откуда приходили вести о подтверждении хемиосмотической теории.

Но в 60-е годы, о которых сейчас у нас идет речь, до победы было еще далеко. Не утихали схоластические споры вокруг бесчисленных гипотез энергетического сопряжения, причем каждый из авторов тщился защитить свое детище от нападок, забывая о том, что в науке важно не кто первый, а кто прав. Если автор получал результат, противоречащий его предположениям, но подтверждающий гипотезу Митчела, то он принимался перекраивать свою концепцию вместо того, чтобы идти вперед, следуя за опытом, а не за мертвой схемой "бумажной биохимии".

Еще в 1964 году американцы С. Мур и Б. Прессман описали интереснейшее явление: повышение калиевой проводимости мембраны митохондрий под действием валиномицина. Оказалось, что в присутствии этого антибиотика митохондрии начинают жадно поглощать калий в ответ на включение дыхания. Такой факт хорошо согласовывался с идеями Митчела. Ведь если дыхание создает разность потенциалов со знаком "минус" внутри митохондрий, то ион К+ должен идти внутрь, к минусу, как только повысится калиевая проводимость митохондриальных мембран.

Однако сами авторы вместо этого естественного (теперь!) объяснения придумали сложнейшую схему, чтобы как-то увязать свои результаты с химической гипотезой. Они еще долго потом держались за свою точку зрения, хотя уже в 1967 году А. Лев в СССР и независимо П. Мюллер в США показали, что валиномицин создает специфическую калиевую проводимость в черных мембранах. В том же 1967 году Митчел и Мойл использовали открытия Мура, Прессмана, Льва и Мюллера, добавив валиномицин вместо кальция в своих опытах с митохондриями на рН-метре. Предсказание гипотезы состояло в том, что ионы калия в этих условиях будут способствовать закислению среды при добавке кислорода подобно тому, как это делают ионы кальция. Опыты полностью подтвердили такое предположение.

Ионы калия оказались удобнее, чем ионы кальция.

В отличие от кальция они не связываются с содержимым митохондрий и не повреждают их структуры, даже если накапливаются там в достаточно больших количествах. Именно это обстоятельство позволило Митчелу и Мойл определить величину разности потенциалов (ΔΨ) на мембране дышащих митохондрий. Удалось измерить также и разность концентраций ионов Н+ между митохондриями и средой (сокращенно ΔрН).

Зная ΔΨ и ΔрН, Митчел подсчитал общую величину протондвижущей силы, то есть потенциальной энергии ионов Н+ (протонов), выделяющихся из митохондрий при дыхании и "стремящихся" вернуться назад, внутрь митохондрий, туда, где создалась нехватка положительных зарядов и более щелочная среда. Протондвижущая сила, или протонный потенциал, оказалась порядка четверти вольта. Эта величина соответствовала энергетическому дефициту, который необходимо было покрыть при синтезе АТФ из АДФ и фосфата, если принять, что на каждую синтезированную молекулу АТФ внутрь митохондрий возвращаются два иона Н+.

Вряд ли такое количественное соответствие могло быть простой случайностью. Это наблюдение явилось еще одним доводом в пользу хемиосмотической гипотезы.

Однако оппоненты Митчела поставили под сомнение правомочность исходной предпосылки всей этой серии опытов. Где гарантия, говорили они, что валиномицин прошивает мембрану митохондрий насквозь, а не открывает ионам калия доступ к некой калиевой АТФазе, ферменту, который мог бы транспортировать калий внутрь митохондрий? К тому времени уже был описан во внешней мембране животных клеток фермент, переносящий калий за счет энергии гидролиза АТФ.

Митчелу нечего было возразить, но в душе он уже уверовал в свою правоту. Я помню его доклад в 1968 году на очередном европейском биохимическом съезде в Праге. Ученый вышел на трибуну в помятом дорожном пиджаке и принялся расхаживать, мягко ступая по сцене, победоносно поглядывая поверх стекол очков своими желтыми, немного кошачьими глазами. Время от времени он подходил к доске и, склонив набок крупную голову, рисовал по памяти графики опытов. Ему не смогла испортить настроение даже пропажа чемодана со всеми слайдами и парадным костюмом.

В кулуарах следом за Митчелом ходил пожилой, небольшого роста англичанин и поспешно записывал все его высказывания в дискуссиях, которые немедленно вспыхивали в компании биоэнергетиков, как только среди них появлялся вчерашний затворник из Бодмина. Меня заинтриговала эта фигура, слишком уж не соответствовавшая своей, по-видимому, секретарской роли.

- Кто это преследует Митчела? - спросил я у одного из своих английских коллег.
- Да это Гревил. Ему заказали обзор о гипотезе Митчела для одного из журналов, вот он и собирает материал!

А что же Чанс? Чанс, считавший своим долгом задать вопрос любому докладчику, чье выступление он удостоил своим присутствием, на сей раз хранил необычное молчание, как будто все происходящее его вовсе не касалось. Может быть, капитан спустил паруса, заметив неблагоприятное для себя направление ветра?

Тем временем Митчел пишет вторую "Серую книгу" и вновь издает ее на свой страх и риск. Потом ее публикуют полностью в международном журнале по биофизике в виде одной огромной статьи. Молодой американский биоэнергетик П. Хинкль, вскоре после этого приехавший к Митчелу поработать, говорил мне, что он никогда не видел такого счастливого человека, как Митчел, и такой счастливой семьи, как обитатели Глинн Хауза.

Конформационная гипотеза

Тем не менее борьба еще не окончена, и не только из-за калиевой АТФазы. Появляется на свет божий новая, так называемая конформационная гипотеза сопряжения. Она пытается избавиться от наиболее вопиющих недостатков химической схемы, не прибегая к протонному потенциалу. Автор конформационной концепции, американский биохимик П. Бойер, сразу же отказался от аналогий с брожением. Он не признавал мифических промежуточных продуктов вроде фосфорилированных ферментов дыхания. Предполагалось вместо этого, что перенос электронов дыхательным ферментом создает некую "напряженную конформацию", то есть сжимает молекулу фермента как пружину. Затем "конформационная энергия" передается АТФ-синтетазе, образующей прочный комплекс с дыхательным ферментом. Релаксация (расслабление) напряженной АТФ-синтетазы ведет к синтезу АТФ.

Напряженная конформация, расслабление... Это все было взято из энергетики мышечного сокращения. Если химическая схема уподобляла систему дыхательного фосфорилирования брожению, то конформационная брала в основу биохимию белков мышц, которыми долгие годы занимался Бойер.

Две концепции - калиевой АТФазы и конформационного сопряжения - были противопоставлены хемиосмотической гипотезе на рубеже 60-70-х годов. Вокруг этих концепций дружно сплотились бывшие сторонники химической схемы, чтобы противостоять протондвижущей силе. Тогда их было еще большинство. Но с каждым годом увеличивалось число сторонников Митчела, множились красные флажки на карте в Глинн Хаузе.

Ягендорф, Витт, Булычев и другие

Корнелльский университет в Итаке (штат Нью-Йорк), как мне объяснили по приезде в этот симпатичный городок на севере США, специализируется в подготовке ветеринаров и управляющих отелями. Не знаю уж, кому из них более интересен фотосинтез: ветеринарам, чьи подопечные нагуливают вес, поедая продукты фотосинтеза, или управляющим отелями, которым приходится следить, помимо прочего, за пальмами в гостиничных холлах.

Так или иначе в Корнелльском университете работал А. Ягендорф, специалист по фотофосфорилированию, то есть синтезу АТФ за счет энергии света в хлоропластах. До этого он провел некоторое время в лаборатории Митчела и, вернувшись в Итаку, решил проверить предсказательную силу новой гипотезы. Ягендорф поместил хлоропласты сначала в кислую, а потом в щелочную среду, измеряя при этом количество АТФ. Все манипуляции производились в темноте. Оказалось, что такая процедура ведет к образованию АТФ, как если бы мы на минутку выключили свет.

Система фотофосфорилирования работает без света. Удивительно?

А почему бы и нет, если, по Митчелу, свет нужен для синтеза АТФ только затем, чтобы разделить Н+ и ОН- и образовать разность электрических потенциалов между внутренним пространством хлоропласта и окружающим раствором. Перенеся хлоропласты из кислой среды в щелочную, мы, так сказать, своими руками создаем необходимую разность концентраций водородных ионов, которая будет поддерживать какое-то время синтез АТФ без всякого света.

Городу Итаке красный флажок!

Университет в Западном Берлине. Лаборатория профессора X. Витта. Исследуется электрохромный эффект Штарка: способность некоторых красителей менять свой спектр при помещении в сильное электрическое поле. Оказывается, пленки, приготовленные из смеси пигментов, содержащихся в хлоропластах, демонстрируют этот эффект. Интересно, конечно, но какое он имеет отношение к делу?

Самое прямое. Освещение хлоропластов вызывает спектральный сдвиг, подобный эффекту Штарка. Так, может быть, свет создает электрическое поле на хлоропластной мембране, где как раз и находятся исследованные Виттом пигменты? Тщательный анализ свидетельствует в пользу этого предположения.

Еще один флажок на карте...

А. Булычев, В. Андрианов, Г. Курелла и Ф. Литвин, сотрудники биофака МГУ, ставят опыты на растениях с очень крупными хлоропластами. В один из хлоропластов удается ввести микроэлектрод. Выясняется, что освещение вызывает образование разности потенциалов между хлоропластом и цитоплазмой клетки, куда введен другой электрод.

Рука Митчела тянется к красному флажку. Напрасно. Над Москвой красный флажок уже есть.

Но не думайте, что в Москве все шло так уж гладко. Когда я впервые рассказывал о хемиосмотической гипотезе на одной из всесоюзных конференций, то председательствующий быстро погасил мой пыл. Гипотеза, как было сказано, напомнила ему 20-е годы, когда все химические события в организме объясняли изменением баланса "кислых и щелочных едкостей". Шутка имела большой успех у аудитории.

На Международном ботаническом конгрессе, проходившем в нашей стране, физик Д. Чернавский выступил с заявлением о совершенной невозможности существования хемиосмотического механизма из сугубо теоретических соображений. Он говорил по-русски, а переводчика не было, так что один мой знакомый англичанин из всего выступления Чернавского понял только одно слово "Митчел", повторявшееся множество раз.

- Как все же у вас поддерживают Митчела! - сказал мне потом англичанин.

"Чудо-ионы"

После опытов с протонофорами мы взялись за проверку следующего постулата хемиосмотической гипотезы, а именно ее, так сказать "электрической части".

Митохондрия или хлоропласт - сложная штука, целое натуральное хозяйство внутри клетки. Может быть, когда-то это была самостоятельная клетка микроба, вступившего на путь симбиоза с более крупным хозяином. В митохондриях и хлоропластах есть множество ферментов, в том числе неизученных. Может статься, что среди них скрывается и калиевая АТФаза. Поэтому далеко не безопасно мерить разность электрических потенциалов (ΔΨ), используя природные ионы типа калия, как это сделал Митчел. Лучше бы взять ион искусственный, синтетический, непохожий ни на кого из своих природных собратьев. Но будет ли чужеродный ион проникать через митохондриальную мембрану?

К сожалению, скорее всего нет. Чтобы удерживать образуемую дыханием ΔΨ, мембрана не должна пропускать ионы. Только очень узкий круг вполне определенных, "избранных" природных ионов имеет возможность пройти через мембрану митохондрий. Среди них ион кальция, который избирательно накапливается в митохондриях при участии особого переносчика, локализованного в митохондриальной мембране. Но ион кальция не годится по той же причине, что и калий (а вдруг в митохондриях есть кальциевая АТФаза, подобная, к примеру той, которую обнаружили в некоторых других типах мембран).

Давайте подумаем, почему ионы не проходят через мембрану в отстутствие веществ-переносчиков или специальных ионных каналов?

Все природные мембраны сделаны из жиров и "жирных" белков, то есть полипептидных цепей с высоким содержанием гидрофобных аминокислот. Итак, мебрана жирная. Ионы же в водном растворе окружены связанными молекулами воды ("водной шубой"), и их сродство к жиру крайне низко. Именно поэтому мебрана - барьер для ионов.

Как же природа преодолевает эту трудность, столкнувшись с необходимостью повысить ионную проницаемость мебран? Обратимся к валиномицину, простейшему и наиболее изученному природному переносчику ионов (ионофору). Как показали академик Ю. Овчинников и его коллеги, валиномицин связывает ион калия своими гидрофильными карбонильными группами. При этом гидрофобные остатки аминокислот и оксикислот, образующих валиномицин, оказываются обращенными наружу, а калий занимает центральную полость молекулы антибиотика. Теперь калий окружен не водной шубой, а гидрофобными остатками, имеющими большое сродство к жиру. Так ион калия получает пропуск на вход в митохондрию.

Но такой пропуск нам не годится. Валиномицин очень разборчив в отношении иона-партнера и не связывает даже близкий по свойствам к калию ион натрия, Что уж говорить о неприродных ионах!

А если взять какое-нибудь синтетическое соединение, в котором заряд экранирован гидрофобными заместителями? Не обойдется ли такой ион без пропуска?

Е. Либерман завел свой старенький автомобиль и отправился по московским химическим институтам в поисках "чудо-иона", который, он был твердо уверен, пылится где-нибудь на полке у людей, не способных даже выговорить без запинки слово "фосфорилирование".

Вскоре Либерман вернулся к себе в подвал на Ленинском проспекте, 33, где в недрах одного из академических институтов у него была лабораторная комната. Портфель отяжелел от склянок с невиданными для биохимика веществами. Теперь уже его сотруднице Л. Цофиной пришлось встретиться с трудностями в произношении: "фенилдикарбаундекаборан..." Это анион, имеющий форму усеченного шара, сделанного из атомов бора. Кроме того, там есть фенильный остаток и отрицательный заряд, "размазанный" по всей этой ни на что природное не похожей молекуле, названной для краткости ФКБ-. А вот еще один анион: тетрафенилбор (ТФБ-). Он устроен попроще: четыре фенильных остатка, а в центре бор. Его "электрический антипод" - катион тетрафенилфосфоний (ТФФ+). Он построен так же, как ТФБ-, но вместо бора - фосфор, и в результате заряд "плюс".

- Почему вы взяли такое сложное для синтеза вещество, как ФКБ-? - спросил меня как-то сотрудник американской фирмы по производству реактивов, только что наладивший за океаном выпуск ФКБ- на продажу.

Я не стал его огорчать историей случайной находки ФКБ- и сказал, что это самый лучший среди проникающих синтетических анионов. Либерман, Цофина и их сотрудники обнаружили, что искусственные мембраны практически не создают препятствия для движения ФКБ-. Несколько меньшей, но все же достаточно высокой проникающей способностью обладали также и кое-какие другие из реквизированных Либерманом ионов.

Но как поведут себя ионы-безбилетники в митохондриях? На этот вопрос вскоре смог дать ответ наш сотрудник А. Ясайтис. Оказалось, что они успешно заменяют калий и валиномицин в опытах "а lа Митчел и Мойл...".

Вскоре Либерман придумал простой метод измерения "чудо-ионов", и мы получили возможность непрерывно следить за концентрацией этих ионов в растворе.

Проникающие синтетические ионы вели себя в полном соответствии с предсказанием хемиосмотической гипотезы. При включении дыхания катионы послушно направлялись внутрь митохондрий, к минусу, а анионы наружу, к плюсу. Мы назвали это явление электрофорезом проникающих ионов (по аналогии с известным методом разделения заряженных веществ в электрическом поле). Но действительно ли дело в электрофорезе?

Что же, давайте еще раз проверим предсказательную силу "электрической" концепции.

Если обработать митохондрии ультразвуком, они распадутся на мелкие замкнутые пузырьки, окруженные как бы вывернутой наизнанку мембраной: в пузырьках грибовидные выросты АТФ-синтетазы смотрят наружу, в то время как в митохондриях они обращены внутрь. Изменение ориентации мембраны должно повлечь за собой и изменение направления электрического поля.

Опыт - и вновь удача! При дыхании или гидролизе АТФ наблюдалось поглощение анионов (а не катионов, как в опытах с митохондриями).

И в митохондриях, и в вывернутых пузырьках эффекты дыхания и АТФ полностью предотвращались разобщителями-протонофорами.

Когда я доложил результаты наших опытов на съезде европейских биохимиков в Мадриде в 1969 году, это вызвало яростную атаку со стороны Чанса. Он сразу понял, что работа с синтетическими ионами позволяет заполнить недостающее звено в цепи доказательства "электрической части" Митчеловой схемы. Чанс четырежды выступал по поводу моего семиминутного сообщения, и мне пришлось мобилизовать все резервы, чтобы сдержать грозного противника.

Вернувшись из Испании, Чанс тотчас воспроизвел опыты с синтетическими ионами. Для уточнения деталей был послан в Москву его "полномочный представитель" доктор А. Гозалбес. Осенью того же 1969 года в одном из биохимических журналов появилось сообщение Б. Чанса и соавтора, где эффект проникающих ионов был воспроизведен и истолкован в рамках схемы Митчела. Казалось, теперь уж наш капитан действительно спустил паруса.

Впоследствии проникающие синтетические ионы были неоднократно использованы в других лабораториях. Этим методом было выявлено образование разности электрических потенциалов на митохондриях из разных тканей, на бактериях и хлоропластах, то есть на всех основных типах мембранных структур, в которых образуется АТФ. Чтобы не перечислять каждый раз непривычные названия синтетических ионов, Д. Грин предложил всех их назвать "Скулачев-ионами", обозначая катионы Sk+, а анионы Sk-. Это, конечно, глубоко несправедливо, ведь за "чудо-ионами" ездил на машине не я, а Либерман.

История повторяется

Симпозиум по биоэнергетике 8-го Международного биохимического конгресса был вынесен в Люцерн. Других симпозиумов в сентябрьские дни 1970 года в Люцерне не проводилось, и потому любой оказавшийся там биохимик наверняка имел представление о митохондриях, П. Митчеле и Б. Чансе. Здесь можно было спокойно обсудить "классическую проблему" биоэнергетики, не опасаясь, что ваш собеседник на полуфразе вдруг сорвется с места и побежит на заседание слушать тех, кто синтезирует гены.

Собрание в Люцерне производило немного странное впечатление. Всюду царила та атмосфера напряженного ожидания, что возникает в компании, когда все уже в сборе, кроме виновника торжества. В торопливой и сбивчивой манере прочел свой доклад П. Митчел. Против него вновь выступили Э. Слейтер, Л. Эрнстер, Ф. Аццоне. Англичанин отвечал необычно резко, раздраженно. Его противники запальчиво возражали. Нельзя было не заметить, что в их докладах вновь появились варианты старой химической схемы, с которыми они вряд ли решились бы выйти на трибуну год назад. И снова Чанс яростно отрицал право хемиосмотической концепции на существование, будто не он, а его двойник печатаю признал в прошлом году Митчелово кредо.

- Вы видели статью Хантера? - В обращенном ко мне вопросе Митчела с трудом скрывается тревога.

В кулуарах Люцернского симпозиума о Хантере говорили все, хотя сам он в Швейцарию не приехал. Всеобщее возбуждение вызвала серия из четырех статей за подписью А. Пэйнтер и Ф. Хантера, появившаяся в одном из последних номеров "Сообщений по биохимии и биофизике". Сам факт, что этот международный журнал, предназначенный для срочных кратких публикаций, отступил от своих правил и принял целую серию статей одних и тех же авторов, свидетельствовал о сенсационном характере представленных материалов. Знакомство с работой подтверждало это впечатление.

В статьях Пэйнтер и Хантера из университета в Сент-Луисе сообщалось о синтезе АТФ в водном растворе, содержащем всего один небольшой по размеру белок - цитохром с. Процесс прекращался разобщителями, хотя никаких мембран в системе не было и не могло быть.

Этот результат оказался в вопиющем противоречии с концепцией Митчела. Его подтверждение означало бы конец хемиосмотической гипотезы: ведь у Пэйнтер и Хантера не было двух отсеков, разделенных преградой, и потому не могло происходить никакого разделения кислоты и щелочи, положительных и отрицательных зарядов!

Эпиграфом к одной из глав своей книги "Биоэнергетические механизмы" Э. Ракер взял слова Т. Гекели: "Трагедия науки: один гнусный маленький факт убивает прекрасную гипотезу". Но как человек, умудренный опытом современной биохимии с ее хитросплетениями путей обмена веществ и длинными рядами логических построений, Ракер, мудрый Ракер так комментировал великого биолога - "наблюдателя природы" прошлого века: "Давайте, однако, принимать эти гнусные факты такими, как они есть: в лучшем случае это косвенные данные, а подчас и артефакты. Прежде чем выносить заключение об убийстве, удостоверимся, что перед нами действительно труп. Хорошая гипотеза, право же, стоит нескольких гнусных маленьких фактов и нескольких сот негативных экспериментов".

Вернувшись в Москву, я прежде всего решил повторить опыты Пэйнтер и Хантера, благо их система была до чрезвычайности простой. Первые попытки - и неудача. Может быть, не те реактивы? Возьмем другие и проведем реакцию еще раз...

Эта проверка стоила мне нескольких седых волос, а нашей аспирантке Т. Гудзь пары месяцев короткого аспирантского срока. Стремясь повторить чужой опыт, я не надеялся на лавры победителя (они все равно достались бы Хантеру в случае подтверждения его работы). Отрицательный результат также не продвигал нас вперед. Он мог лишь приглушить голос сомнения (а вдруг тогда, пять лет назад, в Варшаве, я ступил на ложный путь и повел своих товарищей "дорогой никуда", которых так много в науке?). Так кто же прав: Ф. Хантер там, в Сент-Луисе, или мы здесь, в Москве?

Еще до опытов по проверке Пэйнтер и Хантера я написал в отчете о Люцернском симпозиуме для "Успехов современной биологии": "Известный оптимизм в отношении результатов предполагаемой проверки внушает огромный опыт Хантера в области окислительного фосфорилирования... По широте фронта исследований и их продуктивности группа в Сент-Луисе всегда уступала ведущим американским центрам, таким, как лаборатории Ленинджера, Чанса, Грина, Ракера, Однако работы Хантера, не слишком яркие по своему значению, неизменно отличались высоким запасом прочности: за двадцатилетний срок ни одна из них не была опровергнута или поставлена под сомнение. Вот почему публикация Хантера была воспринята без того скепсиса, с которым встречали в последнее время любые работы, претендующие на решение проблемы окислительного фосфорилирования".

...Спустя несколько месяцев до нас дошел слух, что все данные сенсационных статей двух американцев фальсифицированы. Вскоре стали известны подробности этого нового скандала в биоэнергетике. Пэйнтер, как за шесть лет до этого Уэбстер у Грина, использовала разброс данных по включению меченого фосфата в АТФ, чтобы убедить Хантера, руководителя ее аспирантской работы, в том, что в растворе происходит синтез АТФ. Вот вам и аккуратист Хантер! Что же, и на старуху бывает проруха!

Карфаген должен быть разрушен!

Уже после первого нашего совместного опыта с разобщителями в 1966 году Е. Либерман заявил, что хемиосмотическая гипотеза доказана. Мне полученный результат показался условием необходимым, но недостаточным. Чтобы решить спор, мы затеяли работу с синтетическими ионами. По ее завершении у меня исчезли последние сомнения. Действительно было установлено, что и дыхание и гидролиз АТФ могут образовывать разность электрических потенциалов (ΔΨ) и разность концентраций водородных ионов (ΔрН), то есть протонный потенциал: дыхание -> протонный потенциал <- АТФ. Приняв, что второй процесс обратим, мы получим: дыхание -> протонный потенциал -> АТФ. Другими словами, дыхание и фосфорилированиесвязаны через протонный потенциал.

Синтез АТФ за счет искусственно созданной ΔрН был обнаружен еще А. Ягендорфом. О том, что ΔΨ также может служить источником энергии для фосфорилирования, говорили опыты Б. Прессмана, поставленные в 1967 году. Митохондрии выдерживали с ионами калия и затем помещали в среду без калия. Для повышения калиевой проводимости мембран добавляли валиномицин. Выход ионов калия из митохондрий в бескалиевую среду создавал нехватку положительных зарядов внутри митохондрий. Если бескалиевая среда содержала АДФ и фосфат, то синтезировался АТФ.

Сопоставив эти данные с результатами опытов, описанных выше, я решил, что настало время объявить о доказательстве Митчелова принципа сопряжения.

Доклад на Европейском биохимическом съезде в Варне в 1971 году показался мне подходящим случаем, чтобы выступить с этим заявлением.

Бог мой, что тут началось! После более чем оживленной дискуссии, выплеснувшейся в кулуары конгресса, один из оппонентов заметил, что даже Митчел, отсутствовавший в Варне, вряд ли счел бы мое выступление своевременным. Действительно, спустя некоторое время я получил конверт со штемпелем "Бодмин" и посланием Митчела, где он писал, что считает меня слишком большим энтузиастом хемиосмотической теории.

Мы вновь увиделись с ним через год, на следующем съезде европейских биохимиков. Митчел председательствовал на моей лекции, и я не без волнения вновь показал уже несколько затертый заключительный слайд своего варненского доклада, сопроводив его латынью: "Ceterum censeo Carthaginem delendam esse!" ("При всем том я думаю, что Карфаген должен быть разрушен!")

Председатель уже не возражал. Видно, латынь пришлась по душе выпускнику колледжа Иисуса в Кембридже! Желтые глаза Митчела лучились, он, кажется, даже приоткрыл от удовольствия рот, показав язык нашим оппонентам в зале.

- Вы будете держать флаг, - сказал мне Митчел, уезжая в Англию накануне постсимпозиума по биоэнергетике, где предполагалось нелицеприятное обсуждение конкурирующих теорий. Он вообще (а после Варшавы в особенности) не любил открытых дискуссий.
- Мой компьютер работает медленно, - говорил он, постукивая пальцем по своему высокому лбу.

Бой на постсимпозиуме пришлось принять мне.

Что же возразили наши противники?

Их главный аргумент состоял в том, что митохондрия слишком сложна, чтобы имеющийся в наших руках материал был достаточен для вывода о сопрягающей роли протонного потенциала.

- Почему вы думаете, - спрашивали меня, - что протонный потенциал стоит между дыханием и АТФ, а не где-нибудь в стороне? Например:

дыхание -> ? -> АТФ -> протонный потенциал


или

протонный потенциал -> дыхание -> ? -> АТФ?

Напрасно я говорил о том, что хемиосмотической гипотезой предсказаны явления, мысль о существовании которых не могла даже прийти в голову, если придерживаться любой другой схемы. Оппоненты были неумолимы. Практически все маститые биоэнергетики, присутствовавшие в зале, не разделяли моей точки зрения.

После истории с Уэбстером и Грином, Пэйнтер и Хантером они уже ничему не верили на слово. Каждый хотел на собственном опыте убедиться в правоте логического построения и отсутствии альтернативных объяснений.

Протеолипосомы

Итак, к 1972 году дискуссия между сторонниками хемиосмотической теории и ее противниками переместилась в новую плоскость. Если раньше ставилось под сомнение само существование протонного потенциала, то теперь речь шла лишь о том, как образуется этот потенциал и какова его роль в энергетике клетки.

Очередной вопрос, на который предстояло ответить, состоял в следующем: действительно ли есть два пути образования протонного потенциала: один, использующий энергию дыхания, и другой, использующий энергию АТФ, или существует лишь один такой путь (либо дыхание, либо АТФ).

Чтобы решить эту проблему, необходимо было разделить ферменты, участвующие в дыхании и гидролизе АТФ, и показать, что каждый из них, взятый в отдельности, может образовать протонный потенциал. Следовало сперва разобрать мембрану митохондрий на части - разделить белки и липиды, потом очистить какой-либо один тип белков, например дыхательный фермент, и после этого посмотреть, может ли этот фермент образовать протонный потенциал.

- Позвольте, - возразите вы, - но ведь протонный потенциал - это трансмембранная потенциальная энергия протонов, а мембрану-то мы уже разрушили!
- Ну и что? Сначала разрушили, а теперь сделаем, да такую, что в ней будет только один тип белков - дыхательный фермент!
- А если природная мембрана, однажды разрушенная, вообще не может быть воссоздана? Если мембрана происходит от мембраны, как клетка от клетки?
- Волков бояться - в лес не ходить.

Э. Ракер волков не боялся (хотя бы потому, что, как говорят, в штате Нью-Йорк они давно вывелись). И вот в Корнелльском университете началась работа по самосборке мембран. Многие месяцы подряд японский стажер Я. Кагава испытывал разные белки, фосфолипиды и способы разрушения мембран, пока наконец один из вариантов опыта не принес надежду на успех. Взяв фосфолипиды из сои и фермент АТФазу из митохондрий бычьего сердца, Кагава растворил их в воде с помощью одной из желчных кислот. Затем он осторожно удалил желчную кислоту и обнаружил, что в растворе получились пузырьки, способные расщеплять АТФ. Скорость распада АТФ повышалась динитрофенолом, что могло бы свидетельствовать о генерации протонного потенциала на мембранах пузырьков.

Незадолго до опытов Кагавы в лабораторию Ракера возвратился из годичной стажировки П. Хинкль, посланный Ракером к Митчелу на выручку. Хинкль не только освоил новую теорию, но и провел в Глинн Хаузе ряд изящных опытов с митохондриями, исследуя один из дыхательных ферментов, цитохромоксидазу. Вернувшись в Итаку, Хинкль заразил Ракера своим митчельянством так, что тот стал первым из признанных корифеев биоэнергетики, кто поддержал Митчела.

Если АТФаза и АТФ-синтетаза, рассуждали Ракер и Хинкль, - это один и тот же фермент, а роль дыхания состоит только в том, чтобы образовать протонный потенциал, необходимый для фосфорилирования, тогда стоит лишь включить в АТФазные пузырьки Кагавы еще и дыхательный фермент, как они, эти пузырьки, начнут образовывать АТФ за счет дыхания.

Ракер засучил рукава белоснежного халата и взялся встраивать цитохромоксидазу в АТФазные пузырьки Кагавы.

Вскоре в американском биохимическом журнале появилось сенсационное сообщение, подписанное Э. Ракером и его лаборанткой А. Кандраш, о самосборке системы дыхательного фосфорилирования. Пузырьки, содержащие АТФазу и цитохромоксидазу, образовывали АТФ при окислении аскорбиновой кислоты. Синтез АТФ полностью прекращался добавлением разобщителей-протонофоров.

Услышав об открытии Ракера, я попросил А. Ясайтиса наладить получение таких же пузырьков здесь, в Москве. Сказано - сделано! И вот уже передо мной три пробирки: в одной пузырьки с АТФазой, в другой - с цитохромоксидазой, а в третьей - с двумя этими ферментами вместе. Попробовали проникающие ионы. Как и следовало ожидать, в белково-липидных пузырьках происходил электрофорез синтетических ионов.

Источниками энергии для транспорта наших ионов могли служить: в АТФазных пузырьках - гидролиз АТФ, в цитохромоксидазных - дыхание, а в смешанных - оба эти процесса. Восстановителем цитохромоксидазы служил водорастворимый белок цитохром с.

Удалось приготовить цитохромоксидазные пузырьки двух типов: одни с цитохромом с внутри и другие с цитохромом с снаружи. В первом случае внутренность пузырьков должна заряжаться положительно, во втором - отрицательно. Чтобы проверить, правильно ли это предположение, были взяты два очень близких по структуре, но разных по заряду иона - ТФБ- и ТФФ+. Оказалось, что при дыхании пузырьки с цитохромом с внутри поглощают ТФБ-, а пузырьки с цитохромом с снаружи поглощают ТФФ+.

Так сбылось еще одно предсказание гипотезы, а в целом был сделан новый шаг вперед. Теперь я уже мог ответить моим критикам: протонный потенциал есть общий продукт двух разных ферментативных систем - дыхательной и АТФазной.

Вообще мне чрезвычайно понравились эти самые фосфолипидные пузырьки, инкрустированные очищенным белком, - простейшая модель, где еще сохранялась интересовавшая нас функция, то есть преобразование химической энергии в электрическую. Я назвал такие пузырьки протеолипосомами, и это имя, кажется, прижилось.

Занятно следить за новыми словами, которые ты придумал, чтобы выпустить в большой мир. Вводить новые слова приходится не ради забавы, а по необходимости, чтобы как-то назвать невиданный раньше предмет, явление или свойство.

Бывает, что слова отражают характер их создателей, которые иногда, не задумываясь о последствиях, пускают в обиход научных статей поспешные творения лабораторного жаргона. Мне кажется, что термин "дигидрокодегидрогеназа" придумал человек либо очень скучный, либо не очень внимательный к своей речи. Но он был первооткрывателем, и термин этот, хоть и неблагозвучный, продержался в биохимической литературе десятки лет, пока не была расшифрована химическая структура так неудачно названного вещества. Потом это слово бесследно исчезло из языка, уступив место буквенному сокращению его структурной формулы.

Иной раз язык активно противится новому слову, выталкивает его, не принимая неудачника в свое лоно. Академик М. Колосов рассказывал мне, что термин "алкоголиз", то есть лизис (расщепление) какого-либо вещества алкоголем, употребленный в посмертном издании трудов академика М. Шемякина, корректоры упорно исправляли на "алкоголизм", и, хотя на всех стадиях корректуры злосчастное "м" безжалостно вымарывалось, в самый последний момент в типографии все же восстановили эту букву, уверенные, что она случайно потерялась на предыдущей стадии полиграфического процесса.

Особенно трудны, а иногда и просто опасны неологизмы, связанные с переводом вновь возникшего термина на иностранный язык. Так, в своем труде о Марсе Дж. Скипарелли написал по-итальянски canali, имея в виду борозды. Затем это слово было механически перенесено в английский и другие языки, что определенно способствовало созданию бума вокруг несуществующих марсианских каналов.

Решив опубликовать по-английски работу о протеолипосомах, я долго не мог придумать, как назвать операцию включения белка в липидный слой мембраны. В конце концов остановился на глаголе inlay ("инкрустировать"). Когда же потребовалось соответствующее причастие ("инкрустированный"), я написал "inlayed", забыв, что inlay - глагол неправильный, как и lay, от которого он происходит, и его причастная форма должна писаться "inlaid".

Свою ошибку я обнаружил лишь после того, как статья вышла в свет. Старейшее в мире издательство "Элзевир", что в Голландии, не заметило моей оплошности, и не существующее в английском языке слово "inlayed" смотрело теперь на меня с набранного крупным шрифтом заглавия статьи.

Я долго сокрушался по поводу своей безграмотности. Представьте же себе мое изумление, когда спустя несколько лет после этого случая я вдруг обнаружил свое "inlayed" в статье известного мексиканского биохимика. Повторяя наши опыты и производя ту же операцию включения белка в мембрану, он употребил причастие "inlayed". Потом я встретил такое же написание у своего коллеги из Индии, затем у немца, а недавно в статье группы американских авторов. Видимо, "inlayed" стало термином.

ОГЛАВЛЕНИЕ

Рассказы о биоэнергетике

Часть I

ИСТОРИЯ НОВОЙ НАУКИ

Глава 1. ЧЕМ ЗАНИМАЮТСЯ БИОЭНЕРГЕТИКИ?
Рождение биоэнергетики
Глава 2. ЧТО ТАКОЕ ЭНЕРГЕТИЧЕСКИЙ ОБМЕН?
Как клетка получает и использует энергию
АТФ - разменная валюта клетки
Где и как образуется АТФ?
Глава 3. ОТ МИРМИКОЛОГИИ К БИОЭНЕРГЕТИКЕ
Муравьиный язык
Митохондрии производят АТФ в пробирке
Глава 4. ДВА ПУТИ
Факт или артефакт?
Стриженые голуби
Бурый жир
Глава 5. КРЕПКИЙ ОРЕШЕК
Жертва "закона Паркинсона"
Ложная аналогия
Парадокс веществ-разобщителей
Глава 6. МИТЧЕЛ И ЕГО ДОГАДКА
Начало пути
Чисто умозрительное построение
Хемиосмотическая гипотеза
Корни гипотезы
Одна из многих гипотез?
Глинн Хауз. Ослы и дети
Глава 7. ПОРАЖЕНИЯ И ПОБЕДЫ
"Глинковские лаборатории"
Первые опыты Митчела и Мойл
"Варшавская битва". Поражение
Серебряный звук трубы
Первая "Серая книга" Митчела
Протонофоры
Красные флажки на карте
Конформационная гипотеза
Ягендорф, Витт, Булычев и другие
"Чудо-ионы"
История повторяется
Карфаген должен быть разрушен!
Протеолипосомы
Глава 8. БЕЛКИ - ГЕНЕРАТОРЫ ТОКА
Драчев и бактериородопсин
Суп из топора
Последняя капля
Глава 9. ПРИЗНАНИЕ
Принцип Митчела
Нобелевский лауреат
Ароморфозы в науке и "комплекс Герострата"
Йоги и биоэнергетика

Часть II

БИОЭНЕРГЕТИЧЕСКИЕ МЕХАНИЗМЫ

Глава 1. МОЛЕКУЛЯРНЫЕ ЭЛЕКТРОСТАНЦИИ
Протонная АТФ-синтетаза
Цитохромоксидаза
Хлорофильные генераторы
Фотосинтез без хлорофилла
Родопсин и зрение
Глава 2. ЭЛЕКТРОДВИГАТЕЛЬ, ИЗОБРЕТЕННЫЙ БАКТЕРИЕЙ
Флагелла, крюк и диски
Протонный потенциал движет бактерией
Вращение хлоропластов
Глава 3. ДВОЙНАЯ БУХГАЛТЕРИЯ ЖИВОЙ КЛЕТКИ
Зачем клетка обменивает натрий на калий?
Электрический кабель цианобактерий
Глава 4. К НОВЫМ РУБЕЖАМ




 
 

Куда пойти учиться



 

Виртуальные консультации

На нашем форуме вы можете задать вопросы о проблемах своего здоровья, получить поддержку и бесплатную профессиональную рекомендацию специалиста, найти новых знакомых и поговорить на волнующие вас темы. Это позволит вам сделать собственный выбор на основании полученных фактов.

Медицинский форум КОМПАС ЗДОРОВЬЯ

Обратите внимание! Диагностика и лечение виртуально не проводятся! Обсуждаются только возможные пути сохранения вашего здоровья.

Подробнее см. Правила форума  

Последние сообщения



Реальные консультации


Реальный консультативный прием ограничен.

Ранее обращавшиеся пациенты могут найти меня по известным им реквизитам.

Заметки на полях


навязывание услуг компании Билайн, воровство компании Билайн

Нажми на картинку -
узнай подробности!

Новости сайта

Ссылки на внешние страницы

20.05.12

Уважаемые пользователи!

Просьба сообщать о неработающих ссылках на внешние страницы, включая ссылки, не выводящие прямо на нужный материал, запрашивающие оплату, требующие личные данные и т.д. Для оперативности вы можете сделать это через форму отзыва, размещенную на каждой странице.
Ссылки будут заменены на рабочие или удалены.

Тема от 05.09.08 актуальна!

Остался неоцифрованным 3-й том МКБ. Желающие оказать помощь могут заявить об этом на нашем форуме

05.09.08
В настоящее время на сайте готовится полная HTML-версия МКБ-10 - Международной классификации болезней, 10-я редакция.

Желающие принять участие могут заявить об этом на нашем форуме

25.04.08
Уведомления об изменениях на сайте можно получить через раздел форума "Компас здоровья" - Библиотека сайта "Островок здоровья"

Островок здоровья

 
----
Чтобы сообщить об ошибке на данной странице, выделите текст мышью и нажмите Ctrl+Enter.
Выделенный текст будет отправлен редактору сайта.
----
 
Информация, представленная на данном сайте, предназначена исключительно для образовательных и научных целей,
не должна использоваться для самостоятельной диагностики и лечения, и не может служить заменой очной консультации врача.
Администрация сайта не несёт ответственности за результаты, полученные в ходе самолечения с использованием справочного материала сайта
Перепечатка материалов сайта разрешается при условии размещения активной ссылки на оригинальный материал.
© 2008 blizzard. Все права защищены и охраняются законом.



 
----